Using IDEA Survey Ratings

Use the Adjusted T Scores rather than the Raw Scores for these reasons:

- No standard deviation or indicator of variability is provided for the national raw scores, so it is impossible to know how one professor's raw score stands relative to the national mean. That is, you may know a rating is below three tenths of a point of the national mean but is that equivalent to .5 standard deviations, 1.0 standard deviations or what?

- The T Scores are a standardized measure of unit (like a z-score which takes into account the spread or variability of a group of scores). The T Score is portrayed on the graphs on pages 2 and 3 of the results and is easier for instructors to understand. The T Score is the raw score result depicted in terms of its percentile ranking within the national database- below the gray bar is lower than average (the lowest 30%), above the gray bar is higher than average (the highest 30%).

- Using the T Scores, the reader can distinguish between the Unadjusted T Score and the Adjusted T Score. As described in the third paragraph of the first page, the Adjusted Scores result from a regression equation which changes the standing of the score depending upon the

 * students' motivation to take the class,
 * reported class size,
 * student effort expended (not attributed to the instructor),
 * course difficulty (not attributed to the instructor), and
 * student work habits.

For example, if the students in a class report they are not at all motivated, then the Adjusted T Scores would be a little higher than the Unadjusted T Scores because the average ratings in this type of class would be a little lower at the national level. The original T Scores are positively or negatively weighted for each of the above variables (depending on how the students in the classes locally respond to these questions) to produce the Adjusted T Scores. That is the reason these should be used.

- Lastly, but possibly most importantly, the Adjusted T Score can allow the figuring of exact percentile rankings. If the percentile rankings of a group of professors is desired, for example, you may have Adjusted T Scores of 53, 57, 61, 65, and 68 and have decided to make awards only to those at the 80th percentile or more, this can easily be figured.
First figure the difference of each score from the average T, which is 50, and divide by the standard deviation which is 10. So for each of the cases we get the equivalent of a standardized score on the left and the percentile on the right which is taken from a table of a standard normal curve (z scores).

1) 3/10 or .3 = 61.2%
2) 7/10 or .7 = 75.8%
3) 11/10 or 1.1 = 86.4%
4) 15/10 or 1.5 = 93.3%
5) 18/10 or 1.8 = 96.4%

From this ordinal list you know that the first two instructors do not qualify for the awards. This procedure is also handy to see just how far apart two scores on a normal distribution may be in terms of percentile. A difference of 4 Adjusted T Score points between the first and second case above is more than 14 percentage points, but between the second and third case a difference of 4 T Score points is equivalent to 10.6 percentage points.

If you do not have access to an intro stat book (for a z table) or would like for me to fax you a copy of a Z score table, send me your fax number.