Addressing & Assessing Empirical & Quantitative Skills

Beginning in Fall, 2014 required in 3 components:

Mathematics
Life & Physical Sciences
Social & Behavioral Sciences
I didn't have any accurate numbers so I just made up this one.

Studies have shown that accurate numbers aren't any more useful than the ones you make up.

How many studies showed that?

Eighty-seven.
Overview

- **THECB Definition of Empirical & Quantitative Skills (EQS)**
- **A few FAQs**
 - By including EQS, is the course automatically considered a Q-course?
 - What is a Q-course?
 - What benefit to students is a Q-course?
- **Addressing EQS**
- **Assessing EQS**
 - Examples of Embedded Exam Questions
 - Using Rubrics
THECB Definition of Empirical & Quantitative Skills (EQS)

“[The] manipulation & analysis of numerical data or observable facts resulting in informed conclusions.”
A few FAQs

By including EQS, is the course automatically considered a Q-course?

Yes, courses included in one of the three core curriculum components requiring EQS are automatically considered Q-courses and are assigned a “Q” attribute in Banner.

If the course is in another core component or if it is not a part of the Core Curriculum, contact Dr. Nancy Martin, Associate Vice Provost-Core Curriculum & QEP for information regarding how to become a Q-course.

Email: Nancy.Martin@utsa.edu
What is a Q-course?

A course that seamlessly integrates quantitative reasoning & communication skills with a focus on contextual learning

What benefit to students is a Q-course?

In addition to enhancing students’ quantitative literacy skills, Q-courses are identified on the transcript as one that “focuses on quantitative reasoning.”

Students in the 2012-14, 2014-15 and 2015-16 catalogs must have earned credit for at last one Q-course in order to graduate.
Addressing EQS

To prepare students for assessment, plan in-class activities & assignments that require the use of numerical data &/or observable facts.
Assessing EQS

- Most likely be assessed via embedded exam questions

- However, EQS may be assessed using a rubric in some circumstances.

 Example: Students use data as part of a larger class project or paper.
What is the best estimate of the correlation depicted in the scatterplot above?

a. +.03
b. -.03
c. +.80
d. -.80
Create a scatterplot using the data below.

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

* Note that this exam question addresses both EQS and Visual Communication.
Using Rubrics

Give an assignment requiring students to use data.

Example: Using a data set provided by the instructor, students will calculate the incidence and prevalence of a communicable disease (e.g.: STIs, HIV, chicken pox) over a 10-year period. Based on their calculations, students will assess potential patterns and implications for social behavior.

Use a rubric to evaluate assignment demonstrating EQS.

LEAP VALUE Rubrics provide a good starting point for assessment. (See sample on next slide.) VALUE Rubrics are available in Word in the Resources section of this website.
Quantitative Literacy VALUE Rubric

Definition
Quantitative Literacy (QL) - also known as Numeracy or Quantitative Reasoning (QR) - is a "habit of mind," competency, and comfort in working with numerical data. Individuals with strong QL skills possess the ability to reason and solve quantitative problems from a wide array of authentic contexts and everyday life situations. They understand and can create sophisticated arguments supported by quantitative evidence and they can clearly communicate those arguments in a variety of formats (using words, tables, graphs, mathematical equations, etc., as appropriate).

Evaluators are encouraged to assign a zero to any work sample or collection of work that does not meet benchmark (cell A) level performance.

<table>
<thead>
<tr>
<th>Interpretation</th>
<th>Capstone 4</th>
<th>Milestone 3</th>
<th>Milestone 2</th>
<th>Milestone 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ability to explain information presented in mathematical forms (e.g., equations, graphs, diagrams, tables, words)</td>
<td>Provides accurate explanations of information presented in mathematical forms. Makes appropriate inference based on that information. For example, accurately explains the trend shown in a graph and makes reasonable predictions regarding what the data suggest about future events.</td>
<td>Provides accurate explanations of information presented in mathematical forms. For instance, accurately explains the trend data shown in a graph.</td>
<td>Provides somewhat accurate explanations of information presented in mathematical forms, but occasionally makes minor errors related to computations or units. For instance, accurately explains trend data shown in a graph, but may mislabel the slope of the trend line.</td>
<td>Attempts to explain information presented in mathematical forms, but draws incorrect conclusions about what the information means. For example, attempts to explain the trend data shown in a graph, but will frequently misinterpret the nature of that trend, perhaps by confusing positive and negative trends.</td>
</tr>
</tbody>
</table>

| Representation | Skillfully converts relevant information into an insightful mathematical portrayal in a way that contributes to a further or deeper understanding of the data. | Competently converts relevant information into an appropriate and desired mathematical portrayal. | Completes conversion of information but resulting mathematical portrayal is only partially appropriate or accurate. | Completes conversion of information but resulting mathematical portrayal is inappropriate or inaccurate. |

| Calculation | Calculations attempted are essentially all successful and sufficiently comprehensive to solve the problem. Calculations are also presented elegantly (clearly, concisely, etc.). | Calculations attempted are essentially all successful and sufficiently comprehensive to solve the problem. | Calculations attempted are either unsuccessful or represent only a portion of the calculations required to comprehensively solve the problem. | Calculations are attempted but are both unsuccessful and are not comprehensive. |

| Application / Analysis | Uses the quantitative analysis of data as the basis for deep and thoughtful judgments, drawing insightful, carefully qualified conclusions from the work. | Uses the quantitative analysis of data as the basis for competent judgments, drawing reasonable and appropriately qualified conclusions from this work. | Uses the quantitative analysis of data as the basis for workmanlike (without inspiration or nuance; ordinary judgments, drawing plausible conclusions from this work. | Uses the quantitative analysis of data as the basis for workmanlike (without inspiration or nuance; ordinary judgments, drawing plausible conclusions from this work. |

| Assumptions | Explicitly describes assumptions and provides compelling rationale for why each assumption is appropriate. Shows awareness that confidence in final conclusions is limited by the accuracy of the assumptions. | Explicitly describes assumptions and provides compelling rationale for why assumptions are appropriate. | Explicitly describes assumptions. | Attempts to describe assumptions. |

| Communication | Uses quantitative information in connection with the argument or purpose of the work, present it in an effective format, and explicate it with consistently high-quality. | Uses quantitative information in connection with the argument or purpose of the work, though data may be presented in a less than completely effective format or some parts of the explication may be uneven. | Uses quantitative information, but does not effectively connect it to the argument or purpose of the work. | Presents an argument for which quantitative evidence is pertinent, but does not provide adequate explicit numerical support. (May use quasi-quantitative words such as "many" or "for," "increasing," "small," and the like in place of actual quantities.) |
See *Resources* section for additional guidance.